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Predicting particle dispersion in recirculating two-phase flows is a key issue for reacting
flows and a potential application of large eddy simulation (LES) methods. In this study,
Euler/Euler and Euler/Lagrange LES approaches are compared in the bluff body configura-
tion from Borée et al. [J. Borée, T. Ishima, I. Flour, The effect of mass loading and inter-par-
ticle collisions on the development of the polydispersed two-phase flow downstream of a
confined bluff body, J. Fluid Mech. 443 (2001) 129–165] where glass beads are injected into
a complex recirculating flow. These tests are performed for non-reacting, non-evaporating
sprays but are mandatory validations before computing realistic combustion chambers.
Two different codes (one explicit and compressible and the other implicit and incompress-
ible) are also tested on the same configuration. Results show that the gas flow is well pre-
dicted by both codes. The dispersed phase is also well predicted by both codes but the
Lagrangian approach predicts root-mean-square values more accurately than the Eulerian
approach. The effects of mesh, solvers and numerical schemes are discussed for each
method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Today, RANS (Reynolds-averaged Navier–Stokes) equations are routinely solved to design combustion chambers, for both
gaseous and liquid fuels. Recently, large eddy simulation (LES) has been extended to reacting gaseous flows in order to give
access to unsteady phenomena occurring in combustion devices (such as instabilities, flashback or quenching), and to pro-
vide better accuracy for the prediction of mean flows. The success of these approaches for gaseous flames in the last years [2–
12] is a clear illustration of their potential. LES gives access to the large scales structures of the flow, reducing the importance
of modeling, and capturing a significant part of the physics controlling these flames.

Even though LES has already demonstrated its potential for gaseous flames, its extension to two-phase flames is still lar-
gely to be done. First, the physical submodels required to describe the atomization of a liquid fuel jet, the dispersion of fuel
droplets, their interaction with walls, evaporation and combustion are as difficult to build in LES as in RANS because they are
essentially subgrid phenomena. Second, the numerical implementation of two-phase flow LES remains a challenge: the
equations for both the gaseous and the dispersed phases must be solved together at each time step in a strongly coupled
manner. This differs from classical RANS where the resolution of the two phases can be done in a weak procedure, bringing
first the gas flow to convergence, then the solid particles and iterating until convergence of both phases. Finally, in the
. All rights reserved.
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context of parallel supercomputing, numerical efficiency is an additional constraint. For single-phase flows, efficient and
accurate solvers have been developed and speedups of the order of 5000 are not uncommon [13]. Representing the main
physics of two-phase flows while maintaining a similar parallel efficiency for two-phase flow solvers raises additional ques-
tions: particle/mesh load imbalance is a crucial issue in Euler/Lagrange simulations, as discussed for instance in [14,15].

In LES of reacting two-phase flows, physics and numerics interact strongly: the first question is to choose a paradigm to
describe the two-phase flow. In dilute particle-laden flows, most RANS codes use Euler/Lagrange (EL) methods in which the
gas flow is solved using an Eulerian method and the particles are tracked using a Lagrangian approach. An alternative tech-
nique is to use Euler/Euler (EE) methods in which both phases are solved using an Eulerian approach. The history of RANS
development has shown that the EL and EE methods both show advantages and disadvantages depending on the application.
Consequently, both approaches are found today in most commercial codes. For LES, both EE and EL approaches are being
developed and the focus of this study is to test and compare them in a reference case where complete sets of experimental
results for gas and dispersed phase are available. This exercise is performed here without evaporation or combustion: the
droplets are replaced by solid particles.

2. Flow configuration and work objectives

2.1. Choice of the configuration

In combustion chambers, the flame resulting from a free jet flow would be too long compared to the dimensions of the
chamber, and also very difficult to stabilise. Therefore, most combustion devices are designed so as to anchor the flame at a
specific location. The use of a flame holder is often difficult due to the very high temperatures that may damage the device
itself. Another possibility is to stabilise the flame behind a sudden expansion like a backward-facing step: the flow is strongly
decelerated forming a corner recirculation zone, and the recirculating hot gases then provoke the ignition of the incoming
fresh gases. As far as aeronautical combustion chambers are concerned, highly swirling flows that pass through a sudden
expansion are preferred since they provide a more compact stabilised flame. A central toroidal recirculation zone is created,
acting as a flame holder in the center of the flow, close to the injector tip. In such devices, the recirculation zones induce high
turbulence levels and high mixing rates, stabilising the flame and reducing pollutant emissions.

Before computing reactive two-phase flows in such devices, a validation of the turbulent dispersion of the particles in
similar flows is needed. Indeed, the accurate description of the fuel droplet motion is crucial to determine first the resulting
fuel vapor distribution, and then the combustion mode and the pollutant emissions among others. With aeronautical appli-
cations in prospect, the bluff body flow from Borée et al. [1] is a very interesting configuration. First, it exhibits the same flow
structures as combustion chambers, with corner recirculation zones and stagnation points. To predict their location, a pre-
cise description of the large structures and the intermittency of the fluid flow is required [16–18]. Second, the particle mo-
tion is complex: depending on their inertia, the fuel droplets are captured in the recirculation zones or cross them. Since they
are then vaporised, they directly determine the gaseous fuel field, and consequently, the burner efficiency as well as the pol-
lutant emissions [19,20]. Then, as very few particles reach the external walls of the chamber, the particle–wall interactions
can be neglected in this configuration, which simplifies the comparison between both methods. Indeed, modeling particle
motion in wall-bounded flows is still a challenge despite multiple studies using either the EL approach [21–24] or the EE
approach [25–27]. Furthermore, in a hot combustion chamber where liquid fuel is injected, the fuel droplets often evaporate
rapidly and the interaction between particles and solid walls is not a crucial mechanism. If not, a liquid film develops on the
walls, which requires specific modeling [28]. Finally, a large amount of data is provided by Borée et al. [1], including mean
and fluctuating quantities for both phases, which allows to validate not only the gas LES models, but also the dispersed phase
modeling.

2.2. Description of the experimental setup

The configuration of Borée et al. [1] consists of a vertical axisymmetrical particle-laden confined bluff body flow (see
Fig. 1) on the flow loop Hercule of EDF – R&D.1 Air blowers are used to generate the coflow whereas both air and glass beads
are injected in the inner pipe. The measurement zone is located at z = 0 downstream of the inner and annular ducts, where
large recirculation zones are created between the central jet and the coflow. Thus, the resulting flow is very similar to the
ones obtained in industrial combustion devices, where fuel droplets are injected together with air. Hereafter, the symbols
�f and �p denote the fluid and the particles.

2.2.1. The gas phase
Schefer et al. [17] show that the topology of a turbulent bluff body flow strongly depends on the ratio Uf ;I=Uf ;C , where U is

a bulk velocity and the subscripts I and C denote the inner pipe and the coflow, respectively. Depending on the velocity ratio
Uf ;I=Uf ;C , there are three possible flow topologies [17]. In Fig. 2, sketches of mean gas velocity vectors are drawn for three
1 Électricité de France – Recherche & Développement.



Fig. 2. Plots of the measured mean velocity vectors in a bluff body stabilised methane jet for Uf ;I=Uf ;C ¼ 2:8 (a), Uf ;I=Uf ;C ¼ 1:4 (b), and Uf ;I=Uf ;C ¼ 0:84 (c).
Black dots show the location of the stagnation points and round arrays give the direction of rotation of the shear layer vortices. From Schefer et al. [17].

Fig. 1. Configuration of Borée et al. [1]. The dimensions are: RI = 0.010 m, RC,1 = 0.075 m, RC,2 = 0.150 m. The ducts and the chamber are respectively 2 m and
1.5 m long.

Fig. 3. Mie scattering measurements of the instantaneous particle distribution in a bluff body stabilised methane jet for Uf ;I=Uf ;C ¼ 2:8 (a), Uf ;I=Uf ;C ¼ 1:4
(b), and Uf ;I=Uf ;C ¼ 0:84 (c). From Schefer et al. [17].
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decreasing velocity ratios ðUf ;I=Uf ;C ¼ 2:8;1:4 and 0:84Þ whereas in Fig. 3, the gas flow is seeded with small particles to give
access to the flow topology for the same three velocity ratios:

(1) For the highest velocity ratio ðUf ;I=Uf ;C ¼ 2:8Þ, the flow along the axis is similar to a free jet flow. The air flows coming
from the inner and annular pipes converge far from the outlet of the inner duct. Two counter-rotative eddies separate
the two flows before they converge. There are two stagnation points on both sides of the central jet.

(2) At lower velocity ratio ðUf ;I=Uf ;C ¼ 1:4Þ, a single stagnation point is formed along the centerline and the flow looks like
a non-penetrating jet.

(3) Finally, for the smallest velocity ratio ðUf ;I=Uf ;C ¼ 0:84Þ, a second stagnation point appears on the axis whose location
is linked to the geometry global parameter. The second stagnation point remains close to the chamber inlet and does
not move any longer when the ratio Uf ;I=Uf ;C becomes lower.

The experiments of Borée et al. [1] are conducted at ambient temperature and standard pressure: Tf = 293 K and
Pf = 105 Pa. The radius of the inner pipe is RI = 10 mm. The air volume flux of the inner pipe is Qf,I = 3.4 m3 h�1, which corre-
sponds to a mean velocity Uf ;I ¼ 3:4 m s�1, whereas the maximum velocity in the inner duct reaches Umax

f ;I ¼ 4 m s�1.
Although the Reynolds number is rather moderate (ReI ¼ 2RIUf ;I=mf � 4500, where mf is the kinematic viscosity of the fluid),
the ratio Umax

f ;I =Uf ;I ¼ 1:18 at the outlet of the inner pipe is however consistent with developed turbulent pipe flow.
The dimensions of the annular outer region are: RC,1 = 75 mm, RC,2 = 150 mm. The air volume flux in the coflow is

Qf,C = 780 m3 h�1, which corresponds to mean and maximum velocities equal to: Uf ;C ¼ 4:1 m s�1 and Umax
f ;C ¼ 6 m s�1. The

associated Reynolds number of the annular jet is ReC ¼ 2ðRC;2 � RC;1ÞUf ;C=mf � 40;000. The main characteristics of the config-
uration are summarised in Table 1.

The velocity ratio Uf ;I=Uf ;C considered by Borée et al. [1] is 0.83. Following Schefer et al. [17], there are two stagnation
points along the centerline. Choosing a ratio lower than one creates a complex gas flow behavior when modeling particle
dispersion: depending on their inertia, the particles remain in the recirculation zone delimited by the two stagnation points
or leave it.

2.2.2. The dispersed phase
In Borée et al. [1], polydisperse glass particles with material density qp = 2470 kg m�3, are injected in the inner pipe only

through a particle feeder. Two mass fluxes of glass beads, Q 1
p;I ¼ 1 kg h�1 and Q2

p;I ¼ 5 kg h�1, have been used experimentally
to study the influence of particle inertia on the two-phase flow as well as the role of inter-particle interactions. The corre-
sponding mass loading in the inner duct then varies from M1

p;I ¼ 22% to M2
p;I ¼ 110%. In this study, only the lowest mass

loading case is considered.
Particle diameter covers a wide range of size classes from dp = 20 lm to dp = 100 lm. Fig. 4 shows the initial particle dis-

tribution, in mass (M) and in number (N). The resulting mean diameters are respectively dp,M = 63 lm and dp,N = 50 lm. Char-
Table 1
Characteristics of the gas phase at the outlet of the inner and annular pipes.

Gas phase Inner pipe Annular pipe

Radius (m) 0.010 0.075
Volume flux (m3 h�1) 3.4 780
Mean velocity (m s�1) 3.4 4.1
Max velocity (m s�1) 4. 6.
Reynolds number (–) 4500 40,000
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Fig. 4. Experimental initial mass (a), and number (b) distribution of the particle size.
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acterising the particle distribution using a particle Doppler anemometry (PDA) method [29] requires special care: the glass
beads should remain spherical and the inter-particle collision should not induce any particle break-up. Therefore, Borée et al.
[1] repeated the measurements and used a microscope to verify the shape and size of particles.

2.2.3. Characteristic time scales of the two-phase flow
Table 2 gives the particle relaxation time sp depending on the particle diameter dp. In a first approximation, Stokes flow

around the particles is assumed so that sp reads
Table 2
Experim

dp (lm
sp (ms)
St (–)
sp ¼
qpd2

p

18lf
; ð1Þ
where lf is the dynamic viscosity of the fluid.
The comparison of the particle relaxation time with a characteristic time scale of the fluid most energetic eddies sf,t, yields

the Stokes number St. To evaluate sf,t at the outlet of the inner pipe, the length of the most energetic eddies is estimated as a
third of the pipe diameter and their velocity as the maximum fluctuating velocity in the pipe:
St ¼ sp

sf ;t
; where sf ;t ¼

2RI
3

u0max
f ;I

� 7 ms: ð2Þ
Table 2 presents the characteristic Stokes number of the particles depending on their diameter: the smallest particles with
diameter dp = 20 lm almost follow the gas flow while the inertia of the biggest ones with diameter dp = 100 lm makes them
much more independent of the fluid flow.

As underlined by Schefer et al. [30], the recirculation zones and the stagnation points are related to the inner and outer
pipe flow characteristics. However, in the inner pipe (whose diameter is small), the motion of the particles is complex, due to
interactions with the fluid and the walls as well as inter-particle collisions. To quantify whether particles have time to adapt
to changes in gas mean velocity within the inner duct, the particle relaxation time is compared to their transit time TT

p in the
pipe:
TT
p ¼

LI

Umax
f ;I

¼ 500 ms; ð3Þ
where LI = 2 m is the length of the inner duct that particles travel across and Umax
f ;I is the inner maximum gas velocity. Com-

pared to the particle relaxation time, the particle transit time of all particles in the inner pipe remains large. Thus, the par-
ticles have time to adapt to fluid turbulence before they reach the outlet of the inner pipe.

2.3. Objectives of the simulations

In this study two unstructured codes developed at CERFACS and CTR are used to investigate the configuration of Borée
et al. [1]:

(1) An explicit compressible code (AVBP) using both EL and mesoscopic EE [31–33] approaches. For the present study,
AVBP is used on both hexahedron-based and tetrahedron-based grids.

(2) An implicit incompressible code (CDP) using a EL formulation. For this study, hexahedron-based grids are used in CDP.

The dispersed phase consists of solid particles so that evaporation, coalescence and break-up do not have to be consid-
ered. Accounting for polydispersion in the bluff body configuration using EL approaches is straightforward: particles with
different diameters are injected at the inlet of the chamber. When using EE approaches, there are two main methods. On
the one hand, polydispersion can be accounted for by introducing a particle size distribution [34]. On the other hand, EE ap-
proaches can be extended to polydispersion using a multi-class method: the set of particulate equations is resolved for a
finite number of particle classes depending on their diameter. The main disadvantage of this method is its computational
cost which drastically increases with the number of classes to be considered. In the specific case of Borée et al. [1] experi-
ments, separate studies (not reported here) using Lagrangian simulations and polydisperse particles or 60 lm particles only
have shown that using a monodisperse distribution of size was very close to the 22% case of Borée et al. [1] and was sufficient
to capture both the mean flow effects on the gas (through two-way coupling) and the dynamics of the 60 lm class. There-
fore, in this work, particle distribution is assumed monodisperse with particle diameter close to the initial mean diameter in
mass: dp = 60 lm. Only the low mass loading case (Mp = 22%) of Borée et al. [1] is studied. Since the particle volume fraction
ental particle relaxation time and Stokes number depending on particle diameter.

) 20 30 40 50 60 70 80 90 100
3.1 6.9 12.3 19.2 27.6 37.6 49.1 62.2 76.7
0.4 1.0 1.8 2.7 3.9 5.4 7.0 8.9 11.0
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ap is about 1% at the inlet, inter-particle collisions are found to play a crucial role in the injection tube [35]. Nevertheless, the
dilution effect being very effective, collision effect may be neglected in the modeling approaches for the numerical simula-
tion of the downstream two-phase flow. Furthermore, the two-way coupling is taken into account through drag force. How-
ever, its impact on the gas phase has been shown of minor importance in the 22% mass loading case [1]. This case allows to
study the following points:

(1) evaluate influence of mesh type (hexahedra vs tetrahedra);
(2) evaluate influence of numerical convective scheme (second and third order);
(3) compare implicit and explicit formulations for time advancement;
(4) compare accuracy of EE and EL approaches.
3. Description of solvers and models

3.1. Gas flow solvers

Numerical methods used in both LES solvers for the gas phase have been extensively described in the literature ([9,7,36]
for CDP and [8,12] for AVBP) and will only be summarised here.

The explicit LES solver AVBP solves the compressible Navier–Stokes equations with a second-order finite-volume Lax–
Wendroff scheme or a third-order finite-element scheme TTGC [37,9]. The WALE model [38] that predicts the right scaling
for the fluid turbulent viscosity when approaching a solid boundary (i.e., mf,t = 0) is used to model the subgrid stress tensor.

The LES solver CDP solves implicitly the incompressible Navier–Stokes equations. The time integration of CDP is based on
the fractional-step method [39] and the space integration relies on a second-order central scheme that conserves the kinetic
energy [7,36]. The dynamic Smagorinsky model [40] is used to model the subgrid stress tensor.

The boundary conditions for each solver are detailed in Section 4.3.

3.2. Dispersed phase flow solvers

The particles are assumed to be rigid spheres with diameter comparable or smaller than the Kolmogorov length-scale. If
the particle density is much larger than the fluid density, the forces acting on particles reduce to drag and gravity [41,42].

3.2.1. Euler/Lagrange approach
In EL simulations, the influence of the particles on the gas phase momentum and energy equations is taken into account

by using the point-force approximation in the general framework of the particle-in-cell method (PIC) [43–47], with standard
single-phase subgrid turbulence modeling approaches. According to Boivin et al. [48], such an assumption is valid for small
mass loading ratio (typically, apqp/qf 6 1) with response time larger than the subgrid turbulence characteristic time scale. In
particular, the coupling force exerted by each particle on the fluid is projected onto the grid nodes. The weights in the pro-
jection operation are inversely proportional to the distances between the particle and the nodes of the containing cell.

With these assumptions, the particle equations of motion can then be written for a single particle as
dxp;i

dt
¼ up;i; ð4Þ

dup;i

dt
¼ �3

4
qf

qp

CD

dp
jvr jvr;i þ gi ¼ �

up;i � ~uf ;i

sp
þ gi: ð5Þ
The local drag coefficient in Eq. (5) is CD and may be expressed in terms of the particle Reynolds number Rep following Schil-
ler and Nauman [49]:
CD ¼
24
Rep
½1þ 0:15Re0:687

p �; Rep ¼
jvrjdp

mf
6 800; ð6Þ
where sp is the particle relaxation time defined as
sp ¼
4
3

qp

qf

dp

CDjvrj
: ð7Þ
The local instantaneous relative velocity between the particle and the surrounding fluid is vr;i ¼ up;i � ~uf ;i, where ~uf ;i is the
fluid velocity at the position of the particle assuming that the flow field is locally undisturbed by the presence of this particle
[42,50]. In first approximation, the velocity is assumed to be equal to the interpolation of the filtered velocity at the position
of the particle [21,51,52]. The effect of the subgrid fluid turbulence is assumed to be negligible owing to the large inertia of
the solid particles [53]. A linear interpolation algorithm is used to compute the fluid velocity at the position of the particle.

3.2.2. Euler/Euler approach
Eulerian equations for the dispersed phase may be derived by several means. A popular and simple way consists in vol-

ume filtering of the separate, local, instantaneous phase equations accounting for the inter-facial jump conditions [54]. Such
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an averaging approach is restrictive because the filter length must be both larger than the inter-particle distance (to define
continuous mean fields of particle number density and particle velocity), and smaller than the smallest length-scale in the
particle velocity field to ensure unicity of the particle velocity in the filtering volume. Moreover, Druzhinin [54] assumes that
all the particles located in this filtering volume have the same velocity, which is untrue when the particle relaxation time is
larger than the smallest turbulent time scale [32]. An alternative to the two-fluid approach is the Eulerian equilibrium ap-
proach proposed by Ferry and Balachandar [55] that reduces the number of transport equations to be solved: only the trans-
port equation for particle number density is solved while the particle velocity is given by the expansion in sp of the local fluid
quantities first proposed by Maxey [41] and then extended by Druzhinin [56], and Ferry and Balachandar [55]. Both ap-
proaches show good agreement with EL results when focusing on preferential concentration of low-inertia particles in
HIT flows [41,57]. However, the errors in the predictions of the particle field increase with the particle response time [58].

Though, the crucial assumption of the above approaches, the particle velocity uniqueness at a given position, fails when
the particle relaxation time is larger than the Kolmogorov time scale, due to the crossing of particle trajectories. To overcome
this difficulty, Février et al. [32], proposed a probability density function (PDF) approach based on a conditional ensemble
average of the particle properties for a given turbulent fluid flow realization. In such an approach, any discrete particle veloc-
ity may be separated into two contributions: an Eulerian velocity field, the mesoscopic velocity field shared by all the particle
realizations, and a Lagrangian random distribution, the random uncorrelated velocity (RUV), spatially uncorrelated and
which accounts for the particle trajectory crossing. The conditional particle velocity PDF �f pðcp;x; tÞ gives the local instanta-
neous probable number of particles with the given translation velocity up = cp, and obeys a Boltzmann-type kinetic equation
accounting for external forces acting on the particles and inter-particle collisions. The moments of the particle PDF are mes-
oscopic Eulerian quantities which obey transport equations derived by integration from the kinetic equation, following the
same methodology than for the derivation of the Navier–Stokes equations in the frame of kinetic theory [59]. So, Février et al.
[32] derived transport equations for particle number density �np, mesoscopic velocity �up and random uncorrelated kinetic en-
ergy (RUE) d�hp and Simonin [60] proposed, as a first approximation, a viscosity assumption to model the random uncorre-
lated kinetic stresses. The mesoscopic approach was evaluated using a priori test from discrete particle simulation (DPS)
coupled with DNS or LES of forced homogeneous isotropic turbulence [61] and fully-developed channel flow [22]. Then,
by analogy with the gas phase, a LES filter is applied to the equations for the mesoscopic quantities [62,33], which leads
to equations for the filtered (in the LES sense) particle number density �np and the filtered correlated velocity ûp using the
mass-weighted averaging dnpup;j ¼ �npûp;j [63]:
o

ot
�np þ

o

oxj
�npûp;j ¼ 0; ð8Þ

o

ot
�npûp;i þ

o

oxj
�npûp;iûp;j ¼ �

�np

sp
ðûp;i � ûf ;iÞ þ �npgi �

o

oxj
Tp;ij �

o

oxj
�np
cdR�p;ij �

o

oxi

2
3

�np
cdhp; ð9Þ
where �np, ûp, cdR�p;ij and cdhp are respectively the filtered particle number density, the particle correlated velocity, the second-
order uncorrelated particle velocity correlation tensor deviatoric, and the particle RUE. The first two terms of the right-hand
side (RHS) of Eq. (9) are the drag force and gravity effects on large scales, the third one accounts for the subgrid-scale (SGS)
effects, the fourth one is a diffusion term and the last one represents the pressure effect due to RUE. Tp,ij stands for the par-
ticle subgrid stress tensor:
Tp;ij ¼ �npð dup;iup;j � ûp;iûp;jÞ: ð10Þ
3.2.3. Filtered RUV and subgrid term modeling
Assuming small anisotropy of the RUM, Simonin et al. [64] model dR�p;ij by a viscous term. For LES approaches this model is

adapted by replacing non-filtered quantities by filtered ones leading to [62]:
cdR�p;ij ¼ �m̂p;RUM
oûp;i

oxj
þ oûp;j

oxi
� 2

3
oûp;k

oxk
dij

� �
; ð11Þ
where the RUM viscosity m̂p;RUM is obtained in the framework of the kinetic theory of particulate flows [61]:
m̂p;RUM ¼
sp

3
cdhp: ð12Þ
For the SGS tensor Tp,ij, Riber et al. [65] propose a viscosity model by analogy with single-phase flows [66,67]. The trace-free
SGS tensor is modeled using a viscosity assumption (compressible Smagorinsky model), while the subgrid energy is param-
etrized by a Yoshizawa model [68]:
Tp;ij ¼ �CS2D2
f
�npjbSpj bSp;ij �

dij

3
bSp;kk

� �
þ CI2D2

f
�npjbSpj2dij; ð13Þ
where bSp is the filtered particle strain rate tensor, jbSpj2 ¼ 2Sp;ijSp;ij and Df the filter characteristic length. The model constants
have been evaluated in a priori tests [69] leading to the values CS = 0.02, CI = 0.012.
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3.2.4. Simplified Euler/Euler model
The filtered particle RUE is required twice in the transport equation for filtered particle correlated velocity (Eq. (9)): first

in the term representing pressure effects due to particle RUE; second when modeling the filtered second-order uncorrelated
particle velocity correlation tensor deviatoric (see Eqs. (11) and (12)). To close these two terms, a transport equation for fil-
tered particle RUE can be solved, as proposed by Février et al. [32]. This has been done by Kaufmann et al. [70] when sim-
ulating DNS of particle-laden HIT flows, showing good agreement between Lagrangian and Eulerian results. Still, these
models proposed for the unclosed terms due to RUM are very recent and the validity of the viscosity model has recently been
questioned by Riber [33] when performing LES in a particle-laden turbulent confined jet flow [71]. Indeed, the resolved par-
ticle fluctuations were considerably damped and only the RUM contributed to the particle agitation, which is not realistic. An
alternative already tested by Boileau et al. [20] and Riber [33], consists in neglecting the RUM contributions in the transport
equations for the dispersed phase. Then, the set of equations reduces to
Table 3
Charact

Name

Grid ty
Numbe
Numbe
Length
Length
Total vo
y+ in th
y+ in th
o

ot
�np þ

o

oxj
�npûp;j ¼ 0; ð14Þ

o

ot
�npûp;i þ

o

oxj
�npûp;iûp;j ¼ �

�np

sp
ðûp;i � ûf ;iÞ þ �npgi �

o

oxj
Tp;ij: ð15Þ
This simplified Euler/Euler model has been chosen to be evaluated in the bluff body configuration. Note that when using this
simplified model, the mean particle velocity and mass flux fields are expected to be correctly predicted while the agitation of
the particles should be under-estimated since a part, depending on the particle inertia, is the RUM contribution [33].

4. Comparison of single-phase flow simulations

4.1. Choice of the computational domain

The total volume of the configuration is large, due to the length of the ducts (2 m) and the chamber itself (1.5 m), which is
far larger than a typical combustion chamber test-rig. Therefore, calculating the whole geometry would be computationally
expensive.

Since the location of the second stagnation point mainly depends on the geometry global diameter, the diameters of the
inner and annular pipes have been kept: RI = 0.010 m; RC,1 = 0.075 m; RC,2 = 0.150 m. In contrast, the pipes have been short-
ened to 0.1 m for two reasons. On the one hand, it is necessary to decrease the length of the ducts: considering the low Rey-
nolds number and the grid resolution in the inner pipe as well as the accuracy of the numerical scheme, it is impossible to
wait for natural destabilisation of the gas flow within the pipe. Specific inlet boundary conditions are therefore used to help
the flow destabilisation (see Section 4.3). On the other hand, the pipes cannot be decreased down to 0.1 m: the accurate pre-
diction of particle motion in a pipe (or a channel) is still difficult to obtain, especially because of particle–wall interactions
[21] and inter-particle collisions [22]. Since these interactions are not accounted for in this work, one has to ensure that the
modified pipe length stays compatible with the particle relaxation time and the particle transit time evaluated in Section
2.2.2.

Note that the length of the chamber (1.5 m) may also be decreased since the second stagnation point is located in the
vicinity of z = 0.4 m and the flow shows very few structures downstream from this point. In this work, the chamber is short-
ened for one of the grids tested, as specified in Section 4.2.

These simplifications allow to divide the volume of the computational domain by two, which drastically reduces the com-
putational cost of the LES.

4.2. Grids tested

Two grids have been tested on this bluff body configuration to investigate the effects of both resolution and grid type (tet-
rahedra or hexahedra). Table 3 details the characteristics of the two grids named gridtet and gridhex. Figs. 5 and 6 present an
overview of the grid resolutions in longitudinal and front cutting planes, respectively.
eristics of the two grids tested.

gridtet gridhex

pe Tetrahedra Hexahedra
r of nodes 549,369 3,255,085
r of cells 3,115,898 3,207,960
of the pipes (m) 0.1 0.1
of the chamber (m) 1.5 0.8
lume of the domain (m3) 0.111 0.062

e inner pipe (–) 15 7.5
e coflow (–) 64 15



Fig. 5. Longitudinal cutting plane (y = 0) of the two grids tested: gridtet (a) and gridhex (b) detail of the region z 2 [�0.1;0.4] m.

Fig. 6. Global front view (left) and detail of the inner inlet (right) for the two grids tested: gridtet (a and b) and gridhex (c and d).
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There are three main differences between the two grids. First, the length of the chamber is different: according to the
experimental setup, the chamber is 1.5 m long for gridtet whereas gridhex has been shortened down to 0.8 m for two reasons.
On the one hand, the second stagnation point is located far upstream from the outlet of the chamber. On the second hand, the
grid can be easily coarsened downstream from the second stagnation point to save computational cost when using tetrahe-
dra, which is more difficult with hexahedra. This simplification has been verified to have no influence on the results. Con-
sequently, as summarised in Table 3, the total number of cells is very similar for the two grids, but the total volume is
twice larger for gridtet than for gridhex. The second difference between the two grids deals with the non-dimensional wall
distance y+ in the pipes which is two times smaller in the inner pipe and four times smaller in the coflow in gridhex than in
gridtet. Both grids contain much more cells in the inner pipe than in the outer one. Finally, in the tetrahedron-based grid,
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special care has been taken to generate small cells in the recirculation zones, which was unaffordable in the hexahedron-
based grid considering the increase in computational cost it would induce.

4.3. Boundary conditions

As the two LES codes use different formulations (see Section 3.1), the boundary conditions shown in Fig. 1 are described
separately.

4.3.1. Boundary conditions for the AVBP code
The characteristic boundary conditions developed by Poinsot and Lele [72], and Moureau et al. [9] are used for these

simulations.
The outlet is nearly non-reflective at atmospheric pressure: Pf = 1.013 � 105 Pa.
The inlet treatment is more complex. Indeed, the first test section where the experimental profiles of mean and fluctuating

fluid velocities are known is located at z = 3 mm. Then, the main difficulty consists in specifying the boundary conditions at
the inlet of the pipes in order to obtain good agreement between the simulations and the experiments at z = 3 mm. Consid-
ering the Reynolds numbers in both pipes (see Section 2.2.1), typical mean axial velocity profiles of fully-developed turbulent
pipes (following the classical 1/7 power-law) are imposed at the inlet of the inner and annular pipes, corresponding to the
experimental mass flux. However, the Reynolds numbers in the pipes are too low to expect natural destabilisation of the
gas flow, i.e., without any flow forcing. Therefore, a time and space-varying velocity signal at the inlet of both pipes is imposed
in order to reproduce the effect of an incoming turbulent field as observed in the experiment. This incoming turbulent signal is
constructed using a random flow generation (RFG) algorithm [73,74]. The incoming field consists of a superposition of har-
monic functions (50 modes projected in the three directions) with two characteristic length-scales prescribed by user: the
most energetic length-scale depends on the pipe diameters while the most dissipative one is directly linked to the grid res-
olution on the inlet patch. Typical fluctuating profiles of fully-developed pipes are imposed at the inlet of the pipes to match
experimental fluctuating profiles at z = 3 mm. Forcing the flow in such a way considerably accelerates the establishment of
developed turbulent flows. It also ensures the presence of coherent perturbations not warranted with a pure white noise.

Since the WALE subgrid model shows a correct behavior close to the wall [38], no wall modeling is used: non-slip con-
ditions are imposed at the walls that are isothermal at ambient temperature: Tf = 293 K.

4.3.2. Boundary conditions for the CDP code
An alternative to the RFG method to generate inlet turbulence in the inner pipe is to compute a well-resolved turbulent

pipe separately and to inject it in the bluff body computation. The advantage of this injected turbulence is to be non-syn-
thetic without any parameter to prescribe. This method is used for the inner pipe by computing a periodic pipe with a con-
stant volume forcing in the momentum equations. The forcing is dynamically adjusted to obtain the right mass flux. The
computational mesh, which is five diameter long, consists of 2.05 million hexahedra with a y+ equal to 1.9. Even with this
well-resolved mesh, the transition from a laminar to a turbulent regime is achieved by beginning the computation with a
Reynolds number of 6000 before decreasing slowly to the target Reynolds number of 4500. Then, instead of recording the
velocity on a cut plane, a single instantaneous snapshot of the flow is taken. In this snapshot, the streamwise spatial abscissa
is transformed into a time abscissa by dividing it by the mean velocity in the pipe. Finally, the inlet velocity for the bluff body
pipe is spatially and temporally interpolated from the transformed snapshot. This method saves CPU time because the stand-
alone pipe may be computed during a physical time much shorter than the one needed to converge the bluff body flow. The
only drawback is that it deforms the eddies where the mean streamwise velocity is different of the global mean velocity,
mainly close to the wall.

For the coflow, no turbulence is injected. Only the mean velocity profile is prescribed by imposing the experimental mean
velocity measured at z = 3 mm.

Non-slip conditions are imposed at the walls that are isothermal at ambient temperature: Tf = 293 K while the outlet is
purely convective due to the incompressible equations solved in the CDP code.

4.4. Test cases

In such an industrial-like configuration, the computational cost is often the limiting factor determining the grid resolution
and the numerical method to be used. The choice of the numerical scheme (low- or high-order), the grid resolution and type
(hexahedra or tetrahedra) and the solver type (implicit or explicit) is not straightforward. Whether results are more accurate
with a low-order scheme used on a refined grid or with a high-order scheme coupled with a coarser grid is still an open ques-
tion, for instance [75]. While Colin and Rudgyard [37] and Vreman [76] for example aim at developing high-order schemes
on coarse grids, other authors use second-order schemes on more refined grids [77,7]. Naturally, the computational cost of
the simulation is a key point for the final choice. In this section, five cases are analysed to investigate the influence of:

(1) The numerical scheme: The TTGC scheme [4], third-order accurate finite-element, is known to provide better results
than the second-order finite-volume LW scheme, especially in recirculating flows. The influence of the scheme is
shown in Section 4.6 using the same unstructured grid gridtet, and the AVBP code.
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(2) The inlet boundary condition treatment: The relatively low Reynolds number associated with a low grid resolution in
the pipes do not allow a natural transition to turbulence. The influence of the inlet forcing using the RFG method
described in Section 4.3.1, is analysed in Section 4.7 using the AVBP code with the grid gridtet and the TTGC scheme.

(3) The grid: Hexahedron-based grids are rarely used to calculate swirled flows since they are said to generate preferential
directions. The AVBP code with the TTGC scheme is used to investigate the influence of grid type and grid resolution in
Section 4.8.

(4) The code: In Section 4.10, the results provided by AVBP and CDP on the hexahedron-based grid gridhex are compared
with the measurements to evaluate the accuracy of both gas LES solvers.

All cases are summarised in Table 4 for those carried out with AVBP whereas the LES performed with CDP is detailed in
Section 4.10. To validate results, the following diagnostics are used:

(1) the Q-criterion of Dubief and Delcayre [78], Hunt et al. [79] and Hussain and Jeong [80] to visualise the flow
structures;

(2) the axial variations of mean and root-mean-square (RMS) axial velocities (as plotted in Fig. 3 in Borée et al. [1]) to
measure the length of the recirculation zone;

(3) the radial variations of mean and RMS axial velocities at seven stations along the duct axis (z = 3, 80, 160, 200, 240, 320
and 400 mm as represented in Fig. 7) to provide a detailed comparison of LES and experimental fields.

The cylindrical coordinate system (z,r,h) is used to indicate axial (downward), radial and azimuthal directions. As no
mean swirling motion was detected, only the axial and radial velocity components are provided. The mean components
resulting from LES-averaging are respectively noted W and Ur whereas the RMS components are wrms and ur,rms.

4.5. Qualitative gas flow analysis

The analysis of the averaged quantities resulting from LES requires a simulation time long enough to ensure convergence,
and a sampling time small enough to ensure that the smallest structures can contribute to the averaged solution. In the pres-
ent configuration, the lowest frequency to be represented is associated to the two counter-rotating structures on each side of
the axis as plotted in Fig. 2(c). Considering their size lf,l � 8 � 10�2 m, and their mean rotating velocity Uf,l � 1 m s�1, the or-
der of magnitude of the associated time is sf,l � 8 � 10�2 s. The most energetic eddies in the inner pipe constitute a reason-
able choice to determine the order of magnitude of the highest frequencies. Considering their size lf,t � 7 � 10�3 m, and their
velocity u0f ;t � 1:5 m s�1, the order of magnitude of the associated time scale is sf,t � 4.6 � 10�3 s. All the LES performed with
the explicit solver AVBP have been run for Tav,AVBP � 1 s while the LES performed with the implicit solver CDP has been run
longer: Tav,CDP � 2.5 s. The time between two samples is Dtr � 1.2 � 10�3 s. In both codes, the statistics of the mean fields are
then well converged. This is not always the case for the RMS quantities but the overall tendency gives enough information to
compare models and solvers.
Table 4
Test cases computed with AVBP and corresponding parameters.

Case Solver Grid Scheme Inlet treatment

avbp_tet_lw_norfg AVBP gridtet LW None
avbp_tet_ttgc_norfg AVBP gridtet TTGC None
avbp_tet_ttgc_rfg AVBP gridtet TTGC RFG
avbp_hex_ttgc_rfg AVBP gridhex TTGC RFG

Fig. 7. Instantaneous field of velocity modulus obtained with case avbp_hex_ttgc_rfg in the cutting plane y = 0. The seven vertical lines represent the
experimental stations.
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Fig. 7 shows an instantaneous field of the gas velocity modulus in the cutting plane y = 0 for the case avbp_hex_ttgc_rfg.
Many structures of different sizes are visible. The largest ones are linked to the diameter of the coflow, intermediate ones
appear in the shear layers and structures coming out of the inner jet are also clearly identified.

The time-averaged fields considerably differ from the instantaneous flow structure. Fig. 8(a)–(c) presents, respectively,
the mean field of gas axial velocity, and the RMS fields of gas axial and radial velocities in the cutting plane y = 0 for the case
avbp_hex_ttgc_rfg. The iso-contour line of zero mean axial velocity is added on the three pictures. All fields are rather sym-
metric, which indicates good convergence of the simulations. As expected, there are two points with zero velocity along the
axis, corresponding to distinct inner jet and coflow stagnation points. The peak of axial fluctuations is located at the inner jet
stagnation point whereas the radial fluctuations are maximum in the vicinity of the furthest stagnation point. Both axial and
radial fluctuations show secondary peaks, respectively in the external shear layer and close to the first stagnation point. At
these two specific locations, turbulence is highly anisotropic.

4.6. Influence of the numerical scheme

To evaluate the influence of the numerical scheme on the gas flow, the cases avbp_tet_lw_norfg and avbp_tet_ttgc_norfg
are compared. Both LES are performed with AVBP on the unstructured grid gridtet. The RFG method is not used at the inlet
of the ducts so that the only difference between the two cases is the numerical scheme.

The qualitative impact of the scheme order on the small structures is clear in Fig. 9 where instantaneous iso-surfaces of Q-
criterion are displayed for both LW and TTGC schemes. Both fields exhibit two kinds of coherent structures: some longitu-
dinal vortices come from the inner pipe whereas some others are created in the external shear zone and are rather azimuthal.
However, the TTGC scheme provides more numerous and more detailed flow structures than the LW scheme.
Fig. 8. Mean fields of gas axial velocity (a), and RMS fields of gas axial (b) and radial (c) velocity obtained with case avbp_hex_ttgc_rfg in the cutting plane
y = 0. The black line corresponds to the iso-contour line hWfi = 0.



Fig. 9. Instantaneous iso-surfaces of Q-criterion for LW (a), and TTGC (b). The iso-surfaces are colored by instantaneous velocity. (Simulations performed
with AVBP.)
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These differences are quantified in Fig. 10 where the axial profiles of mean and RMS axial velocities are plotted. When
using LW, the two points with zero mean axial velocity that delimit the recirculation zone are located too far downstream
from the ducts, and so is the peak of RMS axial velocity. On the contrary, the location of the two stagnation points as well as
the peak of RMS axial velocity are well predicted with TTGC. Only the amplitude of this peak is over-estimated. With two-
phase flows and even combustion in prospect, delimiting precisely the recirculation zone is of high importance: the particle
distribution as well as the flame location and shape greatly depend on the first stagnation point. Consequently, all the LES
performed with AVBP and analysed hereafter use the TTGC scheme.

4.7. Influence of the inlet boundary treatment

The runs of Fig. 10 were performed without imposing turbulent velocity fluctuations in the inner pipe and this simplifi-
cation is questionable. Indeed, the mean axial fluid velocity is shown to increase along the inner pipe (�0.1 < z < 0) while
there is no fluctuation developing in the duct, showing that the turbulent flow within the central pipe is not correctly cap-
tured by the solver. Performing a true LES in the ducts would be computationally expensive because it would require a con-
siderable increase in resolution. Therefore, in this work, the specific inlet boundary treatment described in Section 4.3.1 has
been used to feed turbulent fluctuations in the inner pipe.

The direct comparison of the cases avbp_tet_ttgc_norfg and avbp_tet_ttgc_rfg exhibits the impact of the inlet turbulent
forcing method, as shown in Fig. 11. Usually in a pipe flow, the peaks of velocity fluctuations reach almost 10% of the mean
velocity on the centerline. Owing to a lack of resolution in the inner pipe, the velocity fluctuations imposed at the inlet of the
pipe have deliberately been increased to 15% of the axial mean velocity. The main purpose is to get good agreement between
simulations and experiments at the outlet of the duct, i.e., at z = 3 mm, which is shown in Fig. 11(b). The consequence of the
fluid agitation in the duct itself is a flatter mean axial velocity profile in the pipe: Fig. 11(a) shows that the maximum of mean
axial velocity is in better agreement with the experiments at the outlet of the duct when using the RFG method. Note that the
accurate prediction of the location of the recirculation zone for the case avbp_tet_ttgc_norfg is only due to a fortuitous com-
pensation of errors.

4.8. Influence of the grid

The influence of the grid type as well as the grid resolution is investigated comparing the results provided by the cases
avbp_tet_ttgc_rfg and avbp_hex_ttgc_rfg. As mentioned in Table 4, the only difference between these two LES is the grid.
5
4
3
2
1
0
-1
-2

0.40.30.20.10.0-0.1

2.0

1.5

1.0

0.5

0.0
0.40.30.20.10.0-0.1

a b

Fig. 10. Axial profiles of mean (a), and RMS (b), axial gas velocity. Symbols: experiment – dashed line: LW – solid line: TTGC. (Simulations performed with
AVBP.)
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Fig. 11. Axial profiles of mean (a), and RMS (b), axial gas velocity. Symbols: experiment – dashed line: no injected turbulent fluctuations – solid line:
turbulent fluctuations injected at inlet. (Simulations performed with AVBP.)

Fig. 12. Instantaneous iso-surfaces of Q-criterion for gridtet (a), and gridhex (b). The iso-surfaces are colored by instantaneous velocity. (Simulations
performed with AVBP.)
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The qualitative impact of the grid on the fluid flow topology is shown in Fig. 12 where instantaneous iso-surfaces of Q-
criterion are displayed for both cases. Although the two fields exhibit the same kind of longitudinal and azimuthal coherent
structures, there are much more, but also much smaller vortices with the hexahedron-based grid. In other words, both grids
resolve the large vortices in the same way but the grid gridhex resolves much smaller eddies whereas they are dissipated by
the grid gridtet.

Nevertheless, these differences in flow structures are difficult to quantify when plotting the radial mean and RMS axial
velocity at the seven experimental stations as done in Fig. 13. The amplitude of the mean and RMS velocity is very similar
for both grids, and in good agreement with the measurements. The most significant discrepancy is located in the central re-
gion close to the station z = 80 mm where the axial velocity fluctuations are over-estimated with gridtet. As a consequence,
the inner jet flow penetrates slightly farther in the chamber, improving the prediction of the location of the first stagnation
point as well as the length of the recirculation zone.

4.9. Compromise between scheme order and grid

Accounting for the cost efficiency slightly modifies the conclusions drawn in Sections 4.6 and 4.8. Table 5 compares the
computational cost of the cases avbp_tet_lw_norfg, avbp_tet_ttgc_rfg and avbp_hex_ttgc_rfg when simulating 0.1 s physical
time. Note that the RFG inlet treatment does not notably modify the computational cost so that the case avbp_tet_ttgc_norfg
is not reported in Table 5. On the one hand, the computational cost of a simulation with TTGC is 2.5 bigger than with LW [4].
On the other hand, using the unstructured grid gridtet is about four times cheaper than using the hexahedron-based grid
gridhex. This figure is to be related to the gain in quality of the predictions choosing the final configuration and grid.

4.10. Influence of the code

The accuracy of both AVBP and CDP codes is finally compared analysing the results provided by the cases cdp_hex and
avbp_hex_ttgc_rfg. For this purpose, the case avbp_hex_ttgc_rfg has been chosen, not only because it shows the best agree-
ment with the measurements but also because it is the best candidate for direct comparisons with CDP. Indeed, both codes
use here the same hexahedron-based grid. There are however some differences in the parameters used, as summarised in
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Fig. 13. Radial profiles of mean (a), and RMS (b), axial gas velocity. Symbols: experiment – dashed line: gridtet – solid line:gridhex. (Simulations performed
with AVBP.)

Table 5
Code efficiency for single-phase flow calculations depending on the scheme and the grid. Statistics given for 0.1 s (physical time) computed with TTGC on 16
processors on a CRAY XD1 supercomputer.

Case Total CPU time (ls) Efficiency/iteration/node (ls) Efficiency/iteration/cell (ls)

avbp_tet_lw_norfg 28,5271.81 0.32
avbp_tet_ttgc_rfg 68,460 4.35 0.77
avbp_hex_ttgc_rfg 235,823 3.06 3.10
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Table 6. As already mentioned, CDP solves the incompressible Navier–Stokes equations implicitly whereas AVBP solves the
compressible Navier–Stokes equations explicitly. The main consequence is that the time step is 35 times larger for CDP, lead-
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Table 6
Comparison of the parameters and models used for the single-phase flow LES performed with AVBP and CDP on the hexahedron-based grid gridhex.

Case avbp_hex_ttgc_rfg cdp_hex

Solver AVBP CDP
Time step (ls)/CFL 4.22/0.7 147/50
Averaging time (s)/iterations 1./192,000 2.65/18,000
Convective TTGC (third order) Second-order kinetic energy conserving
Scheme [4] [36]
SGS model/wall model WALE/none Dynamic Smagorinsky/none
Inner jet/coflow inlet BC Forcing/forcing Forcing/no forcing
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ing to a reduced computational cost. As a result, the total averaging time is smaller for AVBP, but the convergence has been
ensured to be good enough. Another noticeable difference is the treatment of the inlet boundary condition, as detailed in
Section 4.3.

Fig. 14 displays mean and RMS gas axial velocities along the axis while Fig. 15 shows the radial profiles of mean and RMS
gas axial velocities for the two codes along with the experimental measurements. The global agreement between the two
codes and the experiments is very good and most of the flow physics is captured by the two LES codes. The width and
the length of the recirculation zone are well predicted (see Fig. 15(a)). As shown in Fig. 14(a), the differences between both
codes in predicting the location of the two stagnation points are minor. Focusing on the RMS velocities in Fig. 15(b), the
agreement with measurements is also good. The location and the amplitude of the peaks are well predicted, except in the
coflow where CDP underpredicts the RMS velocities. The origin of the discrepancy is the treatment of the coflow inlet bound-
ary condition, with no turbulence injected with CDP in the outer duct.

The overall result is that both codes provide very similar results, also close to the measurements, even though they use
different numerical methods. This indicates that the accuracy of both codes is good enough to test the dispersed phase with
reasonable confidence on this configuration.

5. Comparison of two-phase flow simulations

This section presents the results for the 22% particle mass loading ratio of the central jet. Riber [33] showed that the im-
pact of the dispersed phase on the gas phase is limited at this mass loading ratio: the central jet penetrates slightly further in
the chamber, also slightly modifying the location of the recirculation zone. As the differences with the single-phase flow case
are minor in the present case, the gas phase results are not discussed and only the results for the dispersed phase are pro-
vided hereafter. The validation of the particle dynamics modeling in this recirculating gas flow is done using three different
solvers: CDP and AVBP-EL which both calculate the particle motion with the EL approach summarised in Section 3.2.1, and
AVBP-EE that uses the simplified mesoscopic EE approach detailed in Section 3.2.2.

An essential part of these two-phase flow LES is the introduction of particles in terms of position and velocity in the cen-
tral jet. This point is discussed in Section 5.1. Then, the three solvers are compared in two steps in Section 5.2. First, since the
gas LES solvers from AVBP and CDP give very similar results on the hexahedron-based grid gridhex, the two Lagrangian solv-
ers CDP and AVBP-EL are compared and validated by comparisons with the measurements. Second, the two approaches (EL
and mesoscopic EE) are compared using the solvers AVBP-EL and AVBP-EE on gridhex. As the gas solver and the grid are ex-
actly the same, a direct comparison of the two methods is proposed.

5.1. Particle injection and test cases

In all cases, the injected particles have a diameter of 60 lm, as justified in Section 2.3. The introduction of these particles
in terms of position and velocity is one of the main difficulty in such a two-phase flow configuration. First, the methodology
differs depending on the solver used. Second, the injection planes are different for all solvers, as shown in Fig. 16. Thus, the
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Fig. 14. Axial profiles of mean (a), and RMS (b), axial gas velocity. Symbols: experiment – solid line: AVBP – dashed line: CDP.
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Fig. 15. Radial profiles of mean (a), and RMS (b), axial gas velocity. Symbols: experiment – solid line: AVBP – dot-dashed line: CDP.
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impact of the particle injection method on the results can be evaluated. In AVBP-EE, both the particle number density profile
and the mean velocity profile are imposed at the inner pipe inlet (z = �100 mm) and correspond to the ones measured exper-
imentally at z = 3 mm. No turbulent fluctuations are introduced. In AVBP-EL and in CDP, the injection planes are located at
z = �3 mm and z = �95 mm, respectively. The injection speed profile is also the experimental one measured at z = 3 mm but
the mass loading is homogeneous over the injection section. Furthermore, in AVBP-EL and in CDP, a white noise (amplitude
Fig. 16. Location of the particle injection depending on the two-phase flow solver used.



Table 7
Summary of two-phase flow test cases and parameters used for the particle injection.

cdp_EL_hex avbp_EL_hex avbp_EE_hex

Averaging time (s) 4.0 0.5 1.0
Grid gridhex gridhex gridhex
Particle mean axial velocity Experimental profile Experimental profile Experimental profile
Turbulent fluctuations White noise (10%) White noise (12%) Zero
Particle distribution Homogeneous Homogeneous Experimental profile
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Fig. 17. Radial profiles of mean (a) and RMS (b) axial particle velocity. Symbols: experiment – solid line: AVBP-EE – dashed line: AVBP-EL – dot-dashed line:
CDP-EL.
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of the order of 10% of the mean velocity) is added to the particle mean velocity profiles to match experimental measurements
at z = 3 mm.



These differences in particle injection are summarised in Table 7. Although they must be taken into account when com-
paring the three solvers AVBP-EL, AVBP-EE and CDP, the comparison of the Lagrangian solvers on the one hand, and the EL
and mesoscopic EE approaches on the other hand is still relevant. The three LES performed with the three different solvers
are also detailed in Table 7. The case cdp_EL_hex uses the same gaseous parameters as the case cdp_hex whereas the two
cases avbp_EL_hex and avbp_EE_hex are based on the case avbp_hex_ttgc_rfg (see Table 6). Due to the implicit formulation
of CDP, the total averaging time affordable with CDP is once again larger than with AVBP.

5.2. Results for two-phase flow simulations

Figs. 17 and 18 display the radial profiles of mean and RMS axial and radial particle velocities at the seven stations along
the axis while Fig. 19 shows the axial profiles of mean and RMS axial particle velocities. The results of the three cases defined
in Table 7 are directly compared with measurements. For the sake of simplicity, the analysis of the results is divided into two
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parts: first, the Lagrangian solvers are compared in Section 5.2.1. Second, the EL and mesoscopic EE approaches are directly
compared in Section 5.2.2.

5.2.1. Comparison of the two EL solvers
Focusing on the results obtained with the two Lagrangian solvers, Figs. 17–19 show a very good agreement between the

two codes, and with the measurements. Better results are generally obtained with CDP but not in all sections. A convenient
way to look at the results is to consider the central axis of the configuration: a critical zone is located around z = 160 mm, the
stagnation point for the gas phase. This is also a zone where particles accumulate and must stop before turning around to
escape from the recirculating zone by the sides. As a consequence, this zone is difficult to predict accurately for the dispersed
phase and the slight differences in calculating the turbulence in the inner pipe may induce such discrepancies on the dis-
persed phase.

5.2.2. Comparison of the EL and the EE approaches
In this section, the cases avbp_EL_hex and avbp_EE_hex are compared. As the two cases use the same grid and exactly the

same gas solver, the EL approach and the mesoscopic EE approach can be directly compared.
First, a qualitative comparison is provided in Fig. 20 which displays instantaneous fields of particle number density for the

two cases. Note that this quantity is directly available when using the mesoscopic EE approach but is reconstructed from the
Lagrangian simulations using a volumic projection method. The two instantaneous fields of particle number density are sim-
ilar: both approaches show several of particles along the inner jet and the largest one is located close to the second stagna-
tion point. Most of the particles trapped in this region are then released in the gaseous recirculation zones. The two fields
show however differences when focusing on the small structures which are more numerous using the EL approach.

Second, Figs. 17–19 show that the two approaches provide extremely similar results showing that the mesoscopic EE ap-
proach is able to compute such a flow and to provide results that are equivalent in precision to an EL computation. There are
however at least two discrepancies. First, the mean particle axial velocity profiles at z = 160 mm show that the particles do
not go far enough in the chamber with the mesoscopic EE approach. Nevertheless, this point has been shown to be very del-
icate to predict for the gas phase and very dependent on the inlet conditions in the pipe. In the present EE computation, no
particle velocity fluctuations are imposed at the inlet of the inner pipe with the mesoscopic approach but this may not be
crucial. The second main difference deals with the particle agitation that is under-estimated by the mesoscopic EE approach
both on the radial and the axial profiles of particle RMS velocities. Actually, this is not surprising since the simplified mes-
oscopic EE model is used in this work: as the total particle agitation is divided into a correlated and an uncorrelated part,
neglecting the RUM contribution in this bluff body flow prevents from predicting the experimental level of particle agitation.
Nevertheless, the mean quantities are still well predicted with the mesoscopic EE model.
Fig. 20. Instantaneous particle volume fraction field in the central plane obtained with the cases avbp_EE_hex (a) and avbp_EL_hex (b).
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5.2.3. Scalability of the EL approach
One interesting issue in the comparison between Eulerian and Lagrangian methods is the analysis of scalability and com-

putational performance. The implementation on massively parallel machines of the Eulerian approaches is not technically
problematic because the flow and the droplets are solved on the same grid using the same spatial discretization scheme.
On the other hand, Lagrangian approaches are less well-suited to parallel computers since the two phases must be coupled,
which increases the complexity of the implementation. Thus, before implementing a Lagrangian module into a new solver
one of these two strategies should be adopted for the dispersed phase treatment:

(1) Task parallelization in which some processors compute the gaseous phase and others compute the droplets.
(2) Domain partitioning in which particles are computed together with the gas flow on geometrical subdomains mapped

on parallel processors. Individual particles or parcels are tracked as they cross the computational domain and must be
exchanged between processors when leaving a subdomain to enter an adjacent one.

Particle tracking within an unstructured solver reveals an additional constraint since particle coordinates cannot be easily
used to locate them inside a cell, and time (and memory) consuming searching algorithm must be used. However, for LES it is
easy to show that only the strategy based on domain partitioning is efficient on large grids because task parallelization
would require the communication of very large three-dimensional data sets at each iteration between all processors. It is
well known that codes based on domain partitioning are difficult to optimize on massively parallel architectures when drop-
lets are clustered in one part of the domain (typically, near the fuel injectors) due to load imbalance. Moreover, the distri-
bution of droplets may change during the computation: for a gas turbine reignition sequence, for example, the chamber is
filled with droplets when the ignition begins thus ensuring an almost uniform droplet distribution; these droplets then evap-
orate rapidly during the computation, leaving droplets only in the near injector regions. This may lead to a poor speedup on a
parallel machine if the domain is decomposed in the same way for the entire computation since some processors should
compute a high number of particles while other are waiting for this task to finish. As a result, load balancing strategies
are required to redecompose the domain by taking into account particles information to preserve a high parallel efficiency
[14].

In this section, the scalability of the AVBP-EL solver is analysed using the simulation speedup and the reference single-
phase CPU time ratio. The former is defined as the ratio between the CPU time of a simulation with n processors and the
CPU time of a simulation with a given number of processors, Nprocs:
2 Thi
Speedup ¼ TrunðnÞ
TrunðNprocsÞ

� n: ð16Þ
The latter is defined as the ratio between the CPU time of a simulation with a given number of processors and the CPU time of
the reference single-phase simulation with n processors:
CPU time ratio ¼ TrunðNprocsÞ
Tsingle-phaseðnÞ

: ð17Þ
Default value of n is 1 but sometimes it is not possible to run the sequential simulation mainly due to high memory require-
ments, in which case the speedup and CPU time ratio are reported to a reference parallel simulation. This scalability study
has been performed in a CRAY XD12 supercomputer for a number of processors up to 64. Results of the moderate mass loading
test case for the two grids named gridtet and gridhex are presented hereafter. The total number of particles presented in the
domain is of the order of 560,000 and 430,000, respectively. Variations smaller than 0.5% in the number of particles were ob-
served between the beginning and the end of the simulation, which implies that it is statistically stationary. The lower number
of particles used in gridhex is due to the difference in the length between the two grids (see Table 3). Even if the length of the
chamber is half the dimension of gridtet, the number of particles is three-fourths since they are mainly concentrated inside the
recirculation zone.

Fig. 21 shows the speedup of the single-phase and the monodisperse test case with gridtet (Fig. 21(a)) and gridhex
(Fig. 21(b)) using AVBP-EL. Scaling of gridhex is reported relative to the 8 processor case (n = 8), which was the smallest num-
ber of CRAY XD1 processors that could run this problem due to high memory requirements. In both cases, the good scala-
bility of the single-phase is unquestionable. The drop of performances observed in Fig. 21(a) for the two-phase flow
simulation is not related to large communications costs between processors but merely to the parallel load imbalance gen-
erated by the partitioning algorithm [15]. The same simulation with a different grid can lead to a completely different speed-
up graph, as it can be observed from Fig. 21(b). Note that these graphs do not contain information about the speedup with
AVBP-EE. It can be considered as good as the single-phase computation since the dispersed phase uses the same paralleliza-
tion applied to the gaseous phase.

The differences between the two speedup graphs can be explained by plotting the number of nodes (or cells) and particles
presented in each processor. As AVBP is based on a cell-vertex formulation, comparing the number of nodes to the number of
particles is more representative of the computational loading since almost all arrays are dimensioned as a function of the
s machine has 58 nodes with 2 processors/node and 2 GB/processor.
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Fig. 21. Speedup of the single-phase and the monodisperse test case with gridtet (a) and gridhex (b) on a CRAY XD1 supercomputer. (Simulations performed
with AVBP-EL.)
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number of nodes per processor. Fig. 22 reports the number of nodes and particles per processor for a 32-partition simulation
by using a recursive inertial bisection (RIB) [81] partitioning algorithm, with gridtet and gridhex, respectively. As expected
from Fig. 21, Fig. 22 shows an excellent load balancing for the gaseous phase: all processors contain about the same number
of nodes. On the contrary, it shows a strong particle load imbalance (Fig. 22(a)) where one single processor contains almost
half the total number of particles of the simulation. This fact is related to the grid downstream coarsening which increases
significantly the memory requirements and the floating-point operations for this processor. This points out the need of load
Fig. 22. Number of nodes and particles per processor for a 32-partition by using a recursive inertial bisection (RIB) partitioning algorithm for gridtet (a) and
gridhex (b). (Simulations performed with AVBP-EL.)



Table 8
Summary of the CPU time ratios of AVBP-EL with gridtet on a CRAY XD1 supercomputer.

Nprocs 1 2 4 8 16 32 64

Single-phase 1 0.50 0.25 0.12 0.06 0.030 0.016
Two-phase EL 1.05 0.54 0.27 0.14 0.08 0.046 0.030

Table 9
Summary of the CPU time ratios of AVBP-EL with gridhex on a CRAY XD1 supercomputer.

Nprocs 8 16 32 64

Single-phase 1 0.51 0.26 0.137
Two-phase EL 1.06 0.524 0.275 0.14

E. Riber et al. / Journal of Computational Physics 228 (2009) 539–564 561
balancing strategies for two-phase flow simulations with a Lagrangian approach, for example, by using multi-constraint par-
titioning algorithms which take into account particle loading on each processor [14]. Even if the dispersed phase presents a
small load imbalance in Fig. 22(b), it is hidden by the higher computational loading needed to calculate the gaseous phase.
This is the main reason of the good speedup observed in Fig. 21(b).

Tables 8 and 9 summarised the CPU time ratios of AVBP-EL with both grids on a CRAY XD1 supercomputer. Additional
time to perform the two-phase flow simulation can vary from 5% up to 87% with the Lagrangian formulation in gridtet
but it is not higher than 5% with gridhex which confirms the tendencies observed with the speedup graphs. All simulations
with AVBP-EE has a constant added cost of the order of 80% since this approach is independent of the mass loading. There-
fore, at this moderate mass loading the Lagrangian approach proved to be faster than the Eulerian formulation.

5.3. Discussion

The previous results require additional comments:

� The quality of the gas phase prediction is essential for the dispersed phase results.

� The comparison of different solvers and boundary conditions demonstrates the importance of the flow in the central injec-

tion pipe: the mean and RMS gas velocity profiles as well as the particle motion directly change the flow field significantly.
For example, the location of the stagnation points (see Fig. 14) is extremely sensitive to any change in the inlet pipe bound-
ary conditions. This is a major drawback of this configuration because performing an accurate LES of the two-phase flow
within this pipe is still out of reach of present capacities for at least two reasons. First, the gaseous flow within the pipe is
difficult to resolve and would require a very fine mesh and sophisticated wall models. Second, the two-phase flow in the
pipe is heavily loaded so that computing the motion of the particles within the pipe would require additional models for
particle–particle and wall–particle interactions [35]. For the present results, the boundary conditions for the dispersed
phase at the tube inlet are approximate solutions and the variety of methods tested for the LES of Table 7 demonstrates
that no easy solution was found to model particles injection in the central tube.

Despite these limitations and differences in inlet conditions, results confirm that most of the flow structures are correctly
captured and that LES of two-phase flows (using EL or mesoscopic EE approaches) is possible and provides accurate results.
To improve on these results, a significant effort will have to be applied to describe the two-phase flow within the injection
tube. Note that in a real combustion chamber, the region where such heavily loaded flows are found is very small and limited
to the vicinity of the fuel injector.

6. Conclusions

This work has presented a comparison between multiple LES approaches and codes for non-reacting two-phase flows and
the experimental results of Borée et al. [1]. This experiment was chosen because it contains multiple complex flow features
which are typical of combustion chambers: strong recirculating zones created by a dump geometry, multiple stagnation
points, high turbulent Reynolds number. LES and experiments have been compared in terms of radial profiles of mean
and RMS axial and radial velocities at seven stations along the axis, and axial profiles of mean and RMS axial velocities
on the experiment central axis. LES approaches included both Euler/Euler and Euler/Lagrange models. Two codes (incom-
pressible implicit and compressible explicit) were used to evaluate the effects of the gas solver on the results so that three
two-phase flow solvers were used:

� an Euler/Euler explicit compressible solver;
� an Euler/Lagrange explicit compressible solver;
� an Euler/Lagrange implicit incompressible solver.
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All computations were performed for monodisperse particle distributions with diameter dp = 60 lm which corresponds to
the initial mean experimental diameter in mass. The effects of subgrid-scale model, numerical scheme accuracy and of grid
refinement were also investigated. The main conclusions are the following:

� All LES approaches provide high-quality results compared to the PDA data of the configuration of Borée et al. [1], thereby
confirming the potential of these methods and their relative insensitivity to the details of the numerical solver. The vari-
ations between LES solvers are mainly due to changes in boundary conditions.

� The quality of the gas flow predictions is critical in order to accurately compute the dispersed phase.
� The most critical parameter controlling accuracy is the grid and the convective scheme: using high-order schemes built for

LES provides the best results.
� The most critical zone in the flow is the central injection tube which feeds the experiment with a highly loaded air/par-

ticles jet. True two-phase LES is impossible in this duct today. Results show that this element controls the flow, especially
the positions of stagnation points on the experiment axis. Even though the quality of the present LES results is high in
most of the flow, this work confirms that future LES accuracy in combustion chambers will need to include all feeding
ducts which represents a significant challenge.

� Both Euler/Lagrange codes provide very similar results while the Euler/Euler approach gives similar mean velocity fields
but slightly under-estimates fields of particle agitation. This corresponds to the expected behavior of the present meso-
scopic model in which the uncorrelated motion was not taken into account [32,33].

� For the present case with moderate mass loading, the total number of particles per processor is moderate. The CPU and
memory requirements to track particles is lower than for the gaseous phase even with the load balancing problem
observed with one of the grids studied. Although the additional cost of Eulerian formulations is independent of the mass
loading, for such a dilute case, the Lagrangian approach proved to be faster up to 64 processors.

These results confirm the potential of LES approaches for two-phase flows. Nevertheless, there is still much work to be
done concerning:

� the effects of the subgrid fluid turbulence on the particle velocity [53];
� the RUM modeling in order to estimate the particle agitation more precisely with the mesoscopic EE approach;
� the wall–particle interactions as well as the particle–particle interactions to simulate the dispersed phase accurately in

pipe and channel flows;
� the extension to two-phase reacting flows which has already been initiated [20].
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